In preparation for answering exercise 2.6.3 in Gilbert Strang’s Linear Algebra and Its Applications, Third Edition, I wanted to derive in detail the effect of a reflection followed by a reflection, a reflection followed by a rotation, and a rotation followed by a reflection. This post demonstrates that a reflection followed by a reflection is equivalent to a rotation.
Assume that we have a matrix that reflects vectors in the line through the origin with angle (the
-line) and a second matrix that reflects vectors in the line through the origin with angle
(the
-line). What is the effect of applying both matrices in succession?
One way to gain an intuition about the problem is to play with a cut-out paper triangle on a piece of paper on which you’ve drawn the two lines of reflection. (Or, if your visualization skills are strong, you can imagine doing this.) After trying this you should find that two reflections will apparently cause the triangle to be rotated from its original position.
If this is indeed the case then the effect of successive reflections in the -line and the
-line can be represented by a matrix
for some angle of rotation .
How does the angle relate to the angles
and
? Since we are dealing with linear transformations the simplest assumption is that
for some
and
where
and
are the same for all
and
.
To determine the values of and
let’s look at the unit vector
and reflect it in two lines. In the first case we reflect the vector in the
-line (the line for which
) and then in the
-line (the
-axis). The first reflection takes
to
and the second reflection leaves it unchanged. The corresponding angle of rotation is
.
In the second case we reflect vector in the
-line and then in the
-line (the line for which
). The first reflection takes
to
and the second reflection takes
to
. The corresponding angle of rotation is
.
If the angle of rotation then in the first case we would have
and in the second case we would have
. Subtracting the first equation from the second we have
or
. Substituting the value of
into the first equation we have
or
.
Our hypothesis is therefore that doing two reflections in succession in the -line and then the
-line would produce a rotation through the angle
. If this is the case then the matrix representing the rotation would be
and this matrix should be equal to the product of the matrices corresponding to the two reflections
Note that the entries of these matrices are expressed in terms of the sine and cosine of and
while in the hypothesized matrix
the entries are expressed in terms of the sine and cosine of an expression containing
and
. As a start toward proving that
it might be useful to re-express
and
in terms of the sine and cosine of
and
as well.
If we look at the trigonometric identities
we see that
and similarly for and
.
Using the second identity we can re-express the product of the two reflection matrices as
What about the other entries still expressed in terms of the sine and cosine of and
? Using the identity
we see that
and
This allows us to re-express the product of the two reflection matrices as
We can further simplify this using the trigonometric identities
(Note that these follow from the original identities above and the fact that and
.)
We then have
We have therefore proved what we set out to prove, that so that the effect of applying a reflection through the
-line followed by a second reflection through the
-line is equivalent to a rotation through the angle
.
Note that if we instead first reflect through the -line and then through the
-line then this is equivalent to rotating through the angle
instead of through the angle
. We therefore have
except in the cases where
or (more generally) the two angles differ by a multiple of
. (The general case is because for any angle
we have
and likewise for the cosine.) In that case
and the equivalent rotation matrix is
corresponding to rotation through the zero angle.
For example, above we took the unit vector and reflected it in the
-line (the line for which
) and then in the
-line (the
-axis). The first reflection takes
to
and the second reflection leaves it unchanged. The corresponding angle of rotation is
. If instead we take
and reflect it first in the
-line and then in the
-line then this takes
to
and then to
. The corresponding angle of rotation is
.
NOTE: This continues a series of posts containing worked out exercises from the (out of print) book Linear Algebra and Its Applications, Third Edition by Gilbert Strang.
If you find these posts useful I encourage you to also check out the more current Linear Algebra and Its Applications, Fourth Edition, Dr Strang’s introductory textbook Introduction to Linear Algebra, Fourth Edition
and the accompanying free online course, and Dr Strang’s other books
.