-
Archives
- October 2021
- January 2021
- March 2019
- January 2018
- December 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- July 2016
- October 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- January 2011
- August 2010
- June 2010
- May 2010
- November 2009
-
Meta
Monthly Archives: November 2016
Linear Algebra and Its Applications, Exercise 3.3.19
Exercise 3.3.19. Given a matrix , the matrix projects onto the column space of . Find the matrix that projects onto the row space of . Answer: The row space of is the column space of . We can then … Continue reading
Linear Algebra and Its Applications, Exercise 3.3.18
Exercise 3.3.18. Suppose we have the following measurements of : and want to fit a plane of the form . a) Write a system of 4 equations in 3 unknowns representing the problem. (The system may not have a solution.) b) Write … Continue reading
Linear Algebra and Its Applications, Exercise 3.3.17
Exercise 3.3.17. Find the projection matrix that projects vectors in onto the line . Answer: The vector is a basis for the subspace being projected onto, which is thus the column space of Using the formula we have so that and … Continue reading
Linear Algebra and Its Applications, Exercise 3.3.16
Exercise 3.3.16. Suppose is a vector with unit length. Show that the matrix (with rank 1) is a projection matrix. Answer: We have But since has unit length we have so that We also have Since and the rank-1 matrix is … Continue reading