-
Archives
- October 2021
- January 2021
- March 2019
- January 2018
- December 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- July 2016
- October 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- January 2011
- August 2010
- June 2010
- May 2010
- November 2009
-
Meta
Monthly Archives: September 2013
Linear Algebra and Its Applications, Exercise 2.6.21
Exercise 2.6.21. Consider the transformation from to that takes into . What is the axis of rotation for the transformation? What is the angle of rotation? Answer: We can approach this problem in at least two ways. The first way … Continue reading
Posted in linear algebra
Leave a comment
Linear Algebra and Its Applications, Exercise 2.6.20
Exercise 2.6.20. A nonlinear transformation from a vector space to a vector space is invertible a) if for any in there exists some in such that and b) if and are in then implies that . Describe which of the … Continue reading
Posted in linear algebra
Leave a comment
Linear Algebra and Its Applications, Exercise 2.6.19
Exercise 2.6.19. Let be the vector space consisting of all cubic polynomials of the form and let be the subset of consisting of only those cubic polynomials for which . Show that is a subspace of and find a set … Continue reading
Posted in linear algebra
2 Comments
Linear Algebra and Its Applications, Exercise 2.6.18
Exercise 2.6.18. Given a vector in find a matrix that produces a corresponding vector in in which all entries are shifted right one place. Find a second matrix that takes a vector in and produces the vector in in which … Continue reading
Posted in linear algebra
Leave a comment
Linear Algebra and Its Applications, Exercise 2.6.17
Exercise 2.6.17. Find a matrix corresponding to the linear transformation of cyclically permuting vectors in such that applied to produces . Determine the effect of and and explain why . Answer: We can construct by considering its effect on the … Continue reading
Posted in linear algebra
Leave a comment
Linear Algebra and Its Applications, Exercise 2.6.16
Exercise 2.6.16. Consider the space of 2 by 2 matrices. Any such matrix can be represented as the linear combination of the matrices that serve as a basis for the space. Find a matrix corresponding to the linear transformation of … Continue reading
Posted in linear algebra
Leave a comment
The composition of linear transformations is a linear transformation
In doing the answers to exercise 2.6.14 in Gilbert Strang’s Linear Algebra and Its Applications, Third Edition I noticed one of the downsides of the book: While Strang’s focus on practical applications is usually welcome, sometimes in his desire to … Continue reading
Posted in linear algebra
Leave a comment