Review exercise 2.17. Suppose that is a vector in
and that
for all
. Show that
must be the zero vector.
Answer: For and
we have
Since for all
we must have
for each of the elementary vectors
,
, through
. By the definition of the elementary vectors we have
if
and
otherwise.
So for all we have
Since for all
we have
.
NOTE: This continues a series of posts containing worked out exercises from the (out of print) book Linear Algebra and Its Applications, Third Edition by Gilbert Strang.
If you find these posts useful I encourage you to also check out the more current Linear Algebra and Its Applications, Fourth Edition, Dr Strang’s introductory textbook Introduction to Linear Algebra, Fourth Edition
and the accompanying free online course, and Dr Strang’s other books
.