Exercise 3.1.14. Given two vectors and
in
, show that their difference
is orthogonal to their sum
if and only if their lengths
and
are the same.
Answer: First we assume that is orthogonal to
. This means that their inner product must be zero, or
So we have which implies that
or
(keeping in mind that the length of a vector must be a positive quantity).
So if is orthogonal to
then we must have
.
Now suppose that . This implies that
or
. We then use the definitions of
and
to run the argument above in reverse:
Since we see that
is orthogonal to
.
So if then
must be orthogonal to
.
Combining the two proofs above, we have shown that for any two vectors and
in in
,
is orthogonal to
if and only if
NOTE: This continues a series of posts containing worked out exercises from the (out of print) book Linear Algebra and Its Applications, Third Edition by Gilbert Strang.
If you find these posts useful I encourage you to also check out the more current Linear Algebra and Its Applications, Fourth Edition, Dr Strang’s introductory textbook Introduction to Linear Algebra, Fourth Edition
and the accompanying free online course, and Dr Strang’s other books
.