Tag Archives: orthogonalization

Linear Algebra and Its Applications, Exercise 3.4.13

Exercise 3.4.13. Given the vectors and the matrix whose columns are , , and , use Gram-Schmidt orthogonalization to factor . Answer: We first choose . We then have We then have We have , so , , and . … Continue reading

Posted in linear algebra | Tagged , , | Leave a comment

Linear Algebra and Its Applications, Exercise 3.4.12

Exercise 3.4.12. Given the vectors and , find a scalar such that is orthogonal to . Given the matrix whose columns are and respectively, find matrices and such that is orthogonal and . Answer: We must have . This implies … Continue reading

Posted in linear algebra | Tagged , | Leave a comment