-
Archives
- October 2021
- January 2021
- March 2019
- January 2018
- December 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- July 2016
- October 2014
- June 2014
- May 2014
- April 2014
- March 2014
- February 2014
- January 2014
- December 2013
- November 2013
- October 2013
- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- March 2013
- February 2013
- January 2013
- November 2012
- October 2012
- September 2012
- August 2012
- July 2012
- June 2012
- May 2012
- April 2012
- September 2011
- August 2011
- July 2011
- June 2011
- May 2011
- April 2011
- March 2011
- January 2011
- August 2010
- June 2010
- May 2010
- November 2009
-
Meta
Tag Archives: orthonormal vectors
Linear Algebra and Its Applications, Exercise 3.4.28
Exercise 3.4.28. Given the plane and the following vectors in the plane, find an orthonormal basis for the subspace represented by the plane. Report the dimension of the subspace and the number of nonzero vectors produced by Gram-Schmidt orthogonalization. Answer: … Continue reading
Linear Algebra and Its Applications, Exercise 3.4.27
Exercise 3.4.27. Given the subspace spanned by the three vectors find vectors , , and that form an orthonormal basis for the subspace. Answer: We can save some time by noting that and are already orthogonal. We can normalize these … Continue reading
Linear Algebra and Its Applications, Exercise 3.4.18
Exercise 3.4.18. If is the projection matrix onto the column space of the matrix and , what is a simple formula for ? Answer: The projection matrix onto the column space of can be calculated as . Since the columns … Continue reading
Posted in linear algebra
Tagged orthogonalization, orthonormal vectors, projection matrix
Leave a comment
Linear Algebra and Its Applications, Exercise 3.4.16
Exercise 3.4.16. Given the matrix whose columns are the following two vectors and [sic]: factor as . If there are vectors with elements each, what are the dimensions of , , and ? Answer: With and as the two columns … Continue reading
Linear Algebra and Its Applications, Exercise 3.4.15
Exercise 3.4.15. Given the matrix find the orthonormal vectors and that span the column space of . Next find the vector that completes the orthonormal set, and describe the subspace of of which is an element. Finally, for find the … Continue reading
Linear Algebra and Its Applications, Exercise 3.4.14
Exercise 3.4.14. Given the vectors find the corresponding orthonormal vectors , , and . Answer: We first choose . We then have We then have Now that we have calculated the orthogonal vectors , , and , we can normalize … Continue reading
Linear Algebra and Its Applications, Exercise 3.4.13
Exercise 3.4.13. Given the vectors and the matrix whose columns are , , and , use Gram-Schmidt orthogonalization to factor . Answer: We first choose . We then have We then have We have , so , , and . … Continue reading
Posted in linear algebra
Tagged orthogonal matrices, orthogonalization, orthonormal vectors
Leave a comment
Linear Algebra and Its Applications, Exercise 3.4.10
Exercise 3.4.10. Given the two orthonormal vectors and and an arbitrary vector , what linear combination of and is the least distance from ? Show that the difference between and that combination (i.e., the error vector) is orthogonal to both … Continue reading
Linear Algebra and Its Applications, Exercise 3.4.9
Exercise 3.4.9. Given the three orthonormal vectors , , and , what linear combination of and is the least distance from ? Answer: Any linear combination of and is in the plane formed by and . The combination closest to … Continue reading
Linear Algebra and Its Applications, Exercise 3.4.7
Exercise 3.4.7. Given where are orthonormal vectors, compute and show that Answer:We have so that since the transpose of a sum is equal to the sum of the transposes. The product of the sums can then be decomposed into two … Continue reading