## Linear Algebra and Its Applications, Exercise 3.4.27

Exercise 3.4.27. Given the subspace spanned by the three vectors $a_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \qquad a_2 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} \qquad a_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$

find vectors $q_1$, $q_2$, and $q_3$ that form an orthonormal basis for the subspace.

Answer: We can save some time by noting that $a_1$ and $a_3$ are already orthogonal. We can normalize these two vectors to create $q_1$ and $q_3$: $\|a_1\|^2 = 1^2 + (-1)^2 + 0^2 + 0^2 = 1 + 1 = 2$ $q_1 = a_1/\|a_1\| = \frac{1}{\sqrt{2}} a_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{bmatrix}$ $\|a_3\|^2 = 0^2 + 0^2 + 1^2 + (-1)^2 = 1 + 1 = 2$ $q_3 = a_3/\|a_3\| = \frac{1}{\sqrt{2}} a_3 = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$

We can then compute a third orthogonal vector $a_2'$ by subtracting from $a_2$ its projections on $q_1$ and $q_3$: $a_2' = a_2 - (q_1^Ta_2)q_1 - (q_3^Ta_2)q_3$ $= a_2 - \left[ \frac{1}{\sqrt{2}} \cdot 0 + (-\frac{1}{\sqrt{2}}) \cdot 1 + 0 \cdot (-1) + 0 \cdot 0 \right]q_1 - \left[ 0 \cdot 0 + 0 \cdot 1 + \frac{1}{\sqrt{2}} \cdot (-1) + (-\frac{1}{\sqrt{2}}) \cdot 0 \right]q_3$ $= a_2 - (-\frac{1}{\sqrt{2}})q_1 - (-\frac{1}{\sqrt{2}})q_3 = a_2 + \frac{1}{\sqrt{2}}q_1 + \frac{1}{\sqrt{2}}q_3$ $= \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$

Finally, we normalize $a_2'$ to create $q_2$: $\|a_2'\|^2 = (\frac{1}{2})^2 + (\frac{1}{2})^2 + (-\frac{1}{2})^2 + (-\frac{1}{2})^2 = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$ $q_2 = a_2'/\|a_2'\| = a_2' = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$

An orthonormal basis for the space is therefore $q_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{bmatrix} \qquad q_2 = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \qquad q_3 = \begin{bmatrix} 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$

(It’s worth noting that the solution for this exercise on page 480 is different than the solution given above. That’s presumably because we computed the orthonormal vectors in the order $q_1$, $q_3$, $q_2$ rather than the standard order $q_1$, $q_2$, $q_3$, taking advantage of the fact that the original vectors $a_1$ and $a_3$ were already orthogonal. Recall that a basis set is not unique, so it is possible to have different orthonormal bases for the same subspace.)

NOTE: This continues a series of posts containing worked out exercises from the (out of print) book Linear Algebra and Its Applications, Third Edition by Gilbert Strang.

If you find these posts useful I encourage you to also check out the more current Linear Algebra and Its Applications, Fourth Edition , Dr Strang’s introductory textbook Introduction to Linear Algebra, Fifth Edition and the accompanying free online course, and Dr Strang’s other books .

This entry was posted in linear algebra and tagged , . Bookmark the permalink.