Exercise 1.7.4. For the differential equation with the corresponding difference equation is
for . Solve the above equation for
and compare their values to the true solution
at
,
and
.
Answer: We do Gaussian elimination on the difference matrix and the right-hand side:
Solving for we have
Solving for we have
Finally we solve for :
For the exact solution we have
NOTE: This continues a series of posts containing worked out exercises from the (out of print) book Linear Algebra and Its Applications, Third Edition by Gilbert Strang.
If you find these posts useful I encourage you to also check out the more current Linear Algebra and Its Applications, Fourth Edition, Dr Strang’s introductory textbook Introduction to Linear Algebra, Fourth Edition
and the accompanying free online course, and Dr Strang’s other books
.